u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

An Introduction to
Graph Based Spam Review Detection

Big Data and Social Computing Lab
University of Illinois at Chicago

Yingtong Dou
08/09/2018



U I UNIVERSITY OF ILLINOIS

AT CHICAGO

Outline

Introduction
General Methods
SpEagle

Fraudar

FBox

FairJudge

N O s Wi E

Our paper



u I UNIVERSITY OF ILLINOIS

AT CHICAGO

1. Introduction

Types of false information

False Information

/\

Intent Knowledge
Misinformation Disinformation Opinion-based Fact-based

Kumar, Srijan, and Neil Shah. “False Information on Web and Social Media: a Survey.” arXiv.org, April
24, 2018.
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1. Introduction

Research Timeline
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Jiang, Meng, Peng Cui, and Christos Faloutsos. "Suspicious behavior detection: Current trends and future
directions." IEEE Intelligent Systems 31.1 (2016): 31-39.
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1. Introduction

Examples of fake reviews

Ooh la la 3 j Deadly

2 Juiwa Version 1 - Aug 25, 2011 8 Version 1 - Oct 23, 2011
Qd | see the head of my old guy, it scares me. At the same time, | will be like! It does not care a shot of being old. Fortunately it is not immediately

Satisfied » » » Good job

2 i Version 1 - Aug 25, 2011 R ma Version 1.1 - Dec 3, 2011
I'm extremely satisfied with my caricature. Well done. | really like this app. | want another!!!

ha ha ha forarared ha ha ha _ o
p:3 Version 1 - Aug 25, 2011 2 Version 1 - Oct 23, 2011
| want to be that close of J Lo! | want to be that close of J Lo!

Simple 1Q test Simple IQ test )

2 ) Version 1.0 - Aug 25, 2011 A Version 1.0 - Oct 23, 2011
Good app. Good app.

Thanks Thanks 34 5

2 ara7s8 Version 1.0 - Aug 25, 2011 2 y Version 1.0 - Oct 23, 2011
I'm extremely satisfied I'm extremely satisfied

Akoglu, Leman, Rishi Chandy, and Christos Faloutsos. “Opinion Fraud Detection in Online Reviews by Network
Effects..” Icwsm, 2013.
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2. General Methods

Current methods adopt three approaches below
e Textual features
* Behavior information

e Network structure

Kumar, Srijan, and Neil Shah. “False Information on Web and Social Media: a Survey.” arXiv.org, April
24, 2018.
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2. General Methods

Textual features

Avg. content similarity

Avg. review length in number of words
Percentage of ALL-capitals words
Percentage of capital letters

Review length in words

Ratio of 1st person pronouns (‘I’, ‘my*, etc.)
Ratio of exclamation sentences containing !’
Ratio of subjective words (by sentiWordNet)
Ratio of objective words (by sentiWordNet)
Description length (information-theoretic)

Rayana, Shebuti, and Leman Akoglu. Collective Opinion Spam Detection: Bridging Review Networks and
Metadata. The 21th ACM SIGKDD International Conference, New York, New York, USA: ACM, 2015.
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2. General Methods

Behavior information

Max. number of reviews written in a day

Ratio of positive reviews (4-5 star)

Ratio of negative reviews (1-2 star)

Avg. rating deviation

Weighted rating deviation

Burstiness—spammers are often generate spams in short time.
Absolute rating deviation from product’s average rating
Extremity of rating

Rayana, Shebuti, and Leman Akoglu. Collective Opinion Spam Detection: Bridging Review Networks and
Metadata. The 21th ACM SIGKDD International Conference, New York, New York, USA: ACM, 2015.
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2. General Methods

Network structure

* SpEagle
 Fraudar
* fbox

* FairJudge
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3. SpEagle

Intuition

Akoglu, Leman, Rishi Chandy, and Christos Faloutsos. “Opinion Fraud Detection in Online Reviews by Network
Effects..” Icwsm, 2013.
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3. SpEagle
Belief Propagation at Probabilistic Graph Model
my_(¥) :Z Py (X.7) H My (X)

M eneighbo(X' )/ T
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3. SpEagle

Model Illlustration
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Rayana, Shebuti, and Leman Akoglu. Collective Opinion Spam Detection: Bridging Review Networks and
Metadata. The 21th ACM SIGKDD International Conference, New York, New York, USA: ACM, 2015.
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4. Fraudar

* KDD 2016 Best Paper

* Detect dense blocks in the graph
* Camouflage resistant

e Scalability

e Efficient under real world setting
 Theory guarantee

Hooi, Bryan, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. “FRAUDAR - Bounding
Graph Fraud in the Face of Camouflage..” KDD, 2016, 895-904
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4. Fraudar
Algorithm

density = \sum(suspicious score)/number of nodes
Construct priority tree
For node 1 1n graph:
Calculate density of each graph excluding 1
Find the largest density and store the graph after removing 1
Update priority tree
Find the largest density graph among all stored subgraph and mark
them as spammer

Hooi, Bryan, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. “FRAUDAR - Bounding
Graph Fraud in the Face of Camouflage..” KDD, 2016, 895-904
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5. fBox

e Attacks under specific threshold will be missed
for baseline methods

* I[mprove Singular Value Decomposition via
reconstructing in/out degrees

Shah, Neil, Alex Beutel, Brian Gallagher, and Christos Faloutsos. “Spotting Suspicious Link Behavior with fBox -
an Adversarial Perspective..” Icdm, 2014, 959-64.
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5. fBox
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6. FairJudge

* Define three metrics:

— Fairness of user

— Reliability of rating

— Goodness of product
* [teratively update three scores above
* Provide theoretical guarantee

* Linear complexity

Kumar, Srijan, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and V S Subrahmanian. “FairJudge -
Trustworthy User Prediction in Rating Platforms..” CoRR cs.Sl (2017).
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Thanks!




